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In the general case, the equations + 

%- = (P2 f A,) 3% - P3 + h,) $ + (Tg - p,) El, - (g - p,) R3 

“I=fi2g-R3g (0.11 

dt (123) 
3 2 

2T = aijPiPj f bijRiRj + 2cijPiRj 
(0.21 

describe the motion of a multiply connected body in an unbounded ideal fluid. The lmposi- 

tion of certain conditions on the parameters 

(0.3) 

in equations (0.1) leads to much simpler problems in rigid body dynamics, such as motion 

about a fixed point of a body in a Newtonian central force field, the motion of a heavy 

gyrostat with steady internal cylindrical motion, etc. [l]. Moreover, some of the quantities 

Xi and cci must be different from zero; otherwise, the reduction indicated simply yields the 

well known solntionof Tisseran and Zhukovski. However, a majority of the known solutions 

of the general problem have been obtained precisely under tbe conditions 

hi = 0, pi = 0 (0.41 

Here, reference must be made to Chaplygin’s investigations [21 on linear integrals. 

Solutions with one linear integral are given in [l], where some of the restrictions of 

equations (0.4) have been removed. Hereinafter, solutions are obtained with two and three 

linear integrals. In reducing the problem to quadrature, use is also made of the following 

known integrals satisfying equations (0.1) 

RI2 + R,2 + R32 = R2, (pl + h,) R, + (Pa + hz) R, + P3 + A,) R3 = m (0.5) 

T - PiRi = h (0.6) 

* Translator’s Note: The symbol (123) denotes that the remaining equations may be 
obtained by commuting subscripts. 
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1. wluttons with two llnear integrals. I.et us choose a coordinate system which is 

fixed in the body so that the linear integrals will be of the form 

P, = /itR, -;- St (12) (1.1) 

The constants k,, k,, sl, and s2 will be definedlater. 

Taking note of equations (0.1) and (1.1). the derivativesof equations (1.1) with respect 

to I vanish identically with respect to I’,, H,, I?,, K,, provided the following conditions 

are satisfied. 
c2t = - k,q, (12) 

cI -: c’s -- k,c~, -;- (k, -- X_,) 03, $2 = - cz3, klc23 .= klc,, = 0 
(1.2) 

6, -= 6, i k,k,n, - (cl - cJ) (k, - k,), b,, == 0, b,, = klk,al, 

Fi - (‘1% -I- chase -im cd3 - c3 (sl + A,) - k, (~1~1 f ~13~3) 
(1.3) 

f’s = %3% -i- cl3sl i- ~31 (sl + h,) - (cl -j- kp, )A, (12) 

;ut3 = 0, (a131 + q&J A3 = 0, (Sl + A,) c33 = 0 

u1s1 4 Ul& = (s1 -i- h,) a3 (12) (1.4) 

2. First Solutton. The constants k,, k,, s1 and sa may be obtained from equations (1.2) 

and (1.4). For simplicity, they are assumed to be given, and the equations (1.2) and (1.4) 

are used to define cla, cat, h,, La. 

For h, = 0 equations (1.2) -_(1.4) are satisfied by the co-efficients of the quadratic 

form 
2T = o,P12 -+ azPz2 -+ a3PiA -I- 2a,,PlP, + (b i a,k12) RI’ f 

f (b T azkz2) Rz2 $- lb t a3 (h - WI B3’ + %bd$, f 

+ 2 IQ - ad, i- a3 (kl - Ul P,R, -t 2 1~3 - a&, -+ ~3 (k, - WI P,R, +- (2.1) 
-+ 2c,P,R, - 2klal,P,R, - 2kza,,P1R, 

and the relations 

PI = 1~3 + ~3 (kl - WI s1 - kl + k, + % (aIs + al,s.J 
( ) (2.2) 

al = ($4) sl+a$2, p3 = o (12) 

Defining 

J, = P, - k,R, - sir J, = P, - kzR, - s2, J, = P, - (k, + k,) R, (2.3) 

Equations (O.l), with the aidof equations (2.1) and (2.2). yield 

9 = (aa - aa) JaJs - QJIJS f 2&R~~ 
dJ, -= 
dt - (a3 - al) J,J, + a,,J,J, - %k,RsJ, (2.4) 

d.1, 
- = (oz - al) JIJl + ala (J2 - Ja2) + JA - J&z dt 

LI = - Zk,auR, + 2 [a,k, + as (k, - k,)l R, + (as - 4 (~2 + a,) - alp (~1 + aI) (1”) 
Assuming that 

J, = 0, J, = 0, J, = const = s 
(2.5) 

then equations (2.4) are satisfied independently of the second group of equations (0.1). 

These latter may be written, in view of equations (2.5), as 
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dR, ._ 
dt - 

2kla,R,R, - u3 (sz + h) R, + uGRa 

!I%_ 
dt 

-- 2k,a3R1R3 + a3 (sl + h) R3 - a3sRl 

dR, - = 2a, (k, - k,) R,R, i- a3 (~3 -i- AS) RI - a3 (SI + AI) Rs 
dt 

(2.6) 

Two known integrals satisfying the above are 

R,Z + R.$ + R,’ = Ra 

k,R12 + kzRz2 + (k, + k,) R32 + (sl i- 4) RI + (sS -I- h) R, $_ ~Rs = m 

and, consequently, R, = RI (R3), R, = R2 (R,). The functional relationship between R, 

and t may now be determined from equations (2.6) by quadrature. 

The solution thusobtained contains fourteen independent parameters 

al, as, a3, alar b, kr, kr, c3, sl, s2, S, R, m, R3’ 

The origin of coordinates will now be shifted to the mass center of the body, and the co- 

ordinate axes will be taken coincident with the principal axes of inertia (this development 

is similar to Sections 3 and 5, [l] ). In thenew coordinate system, equationa (2.1), (2.2) 

and (2.3) are given by 

2T = @I’ + aaP,2 -I- 03P3’ -t 2 (cPIR1 f cap,& + c3P3R3) + 2c,, (P,R, -I- P,R,) + 

+ {b+ 2% ita3 - a2) (c3 - cd + a3 (c3 - d12 + cla2 IQ* (2~2 - a31 + ah31 
2 ia3 (~1 + 4 - ad* R12 + 

+ {b+ 
2~4 [(a3 - ad (c3 - c2) + a3 Cc3 - cl)12 + c12~ [a2' %I - a3) + a12a31 

2 [a3 (al + ~2) - w212 I 
R22 + 

i- {b-i- a3 
[al b3 - ~2) - a2 (c3 - cdl2 + b2 (al + de 

ia3 (al + ~4 - ~21~ 1 
R ~ + 

3 

+ 2c12 a1 (2 ,,“: +$“; ; “) R,R, 
12 

pl = cla3 - c3ul - ala3 
L 

(as - 4 (c3 - c2) + a3 (c3 - 4 al 

a3 (a~ + 4 - ala2 1 -+ a2 - a3 
+ 

2us2 (al + a,) Cl, a, 
a3 (al+ a2) - ala2 a2 - a 

(as - 4) (c3 - Cl) + a3 (c3 - c2) 
c2u3 - c3ua - aau3 

a3 (al + a,) - ala2 1 
h, 

a2 - a3 

+ 

+ 
2%’ (UI d- aa) cl2 hl 

---1 

a3 h + a,) - ala2 a, - u3 

a, = 0, 

P3 = 0 

p = b3 - aa) b3 - Cl) + a3 (c3 - c2) R + u2c12 
1 

a3 (al + a21 - ala2 
1 

a3 h + a21 -- alaa 
R, + a, liL 

al - a3 

p = (a3 - 4 (c3 - c2) t a3 (c3 - cl) R + a1GJ 
2 

a3 (al + a2) - ala2 
2 

a3 @I + a21 - ala2 
R,fu+h2 

- a3 

p 
3 

= Pa3 - a2) (c3 - cd + @a3 - al) (c3 - ~2) 

a3 (al + ~21 - ala2 

R 

3 s 

+ 

From equations (2.4) it is easy to obtain two solutions with arbitrary initial data, 

generalizing the cases of integrability due to Steklov [3] and Liapunov [4]. Thus 

-$ {(a3 - aI) J12 + (a3 - aa) J,2} = 2a,, {(aa - a*) Jr2 - (aa - a3 J?) Ja + 

+ da, {k, (a3 - aI) - k, (a3 - as)) RJIJE 
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Let fzta = 0, k, = x (aa - up), ka = x (aa - at).Then 

(c3 - UJ J,’ + (a3 - a,) Jar = const 

or, taking into account equations (2.3) and (2.2). 

+ (as - 4 p, - x (as - 44 4 aS &I’ = const 
or - ar 

Now, if at = aa = a, = a, a1a = 0,then equations (2.4) yield 

klJf + k,J,* = const 

From equations (1.3) and (2.2), 

k$g+, /&=2L, 
a s1 = 2 (c;- ca) ’ s, = 2 (cap: CQ) 

and, conseqoently, 

(cl - 
[ 

cs - ca 
cd Pl +a RI - 2 (crPL ca) 1 2+ 

+ (c~- cs) [P, + -RI - 2 (cspl c3r = const 

Thene Gasem of integrability were obtained in [I] using a different approach. 

3. Becwd &~UUOII. We now let A, f 0 and restrict consideration to cases where 

At = ka = 0. Using equations (1.2) - (1.4) to determine a,, s, and the constants in 

expression (0.3), leads to 

2T = alPts + aAs f aQC -I- b (R? -f- Rsa + Rap) f 2c (P,R, + P,R, + P,R,) 11 

+ 2~ (P,R, - P,R,) + 2~13 (PIR, - P,R,) 

n, = & = 0, A, = A, pl = c*& pa = c&, ps = - CA, PI = 0, P, = 0 

The intogels in equations (0.5) and (0.6), which in this casemay be written as 

RI!= + R,S + R.+ = Ra, (P3 + h) R, = m 

2 (Pr + A) (@I f G&) = asPsa -I- 2c (Ps -I- A) R, + bRB - 2h 

then yield P,, RI and R, as functionsof R,, and thelast of equations (0.1) now takes the 

form 

= (clsa + q,‘) (Ra - R5’) Rf - -& [as (m - 1R$’ + (2cm + bR3 - 2k) Ra21 

and conseqasntly R, is an elliptic function of time. 

If the originof coordinatea isshifted to themass center of the body, the solution may be 

written as 

2T = @‘I’ + @a’ + @,a + [b - 4 (a;pIa)r] RI3 + [b - 4 (caa?;a)r] R,P + 

+ [’ - 4 (apC$a - 4 (aPCr~a)a]Raa - 4 (aI _‘:,‘;a:__ cd cm@lRr + 

+ ~(P,R, +P,R, + PaRa) + 2c,,U'l%+P&l) + 2cs,V',R, + PA) 

P1+ul-a3 l 

2cl,fl=0, 
p2 + +R,=O 

a 8 
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4. Solutions with threellne&r lategrale. By the same procedure asnaed in Section 1, 

the conditions for the existence of a set ofintegrala 

take the form 
P, = k,R, + SI (123) 

(4.1) 

b, - b, = (k, + k, - k,) (~3 - ~a) + @, - 4) &,a, - (k, - k,) MS 

b,, = - k,cas = - k,c*,, (ks - kz) hs + k&,1) = 0 

(k, - ks) (cu + kzan) = 0 

v.+xB - vQaa = 0, @a + b,,) va - (~1 + &,I va = 0 
(4.2) 

PI = (k, - k,) a1 -I- (c2 i- k& v1 - (C~S i- &a,) VI 

PI = (k, - k,) al -I- (cg i- bad % - (CU -I- k.& % 
(12.9 

Here 

al = wl + wa + w3, PI = Cl% + %l% + Cd, - Pl 

VI = s1 + Al (183) 
(4.3) 

Chaplygin [2], under conditions given by equations (0.41, confined himself to the analy- 

sis of caseain which 

(ks - k,) (k3 - 4) & - 4) # 0 (4.4) 
or 

k, = k, = k, = 0 (4.5) 

But for these cases it is also possible to remove some of the restrictions of equations 

(0.4). Thus, in case condition (4.4) holds, instead of equations (0.4). it is sufficient to 

require that the following conditions be satisfied: 

(a1 - a) Sl + otas, + o&a = US, 

PI+ [c + o @I + k, + kdl A, = a (k, - k, - kJ $1 (1W 

(Chaplygin denoted the parameters c and o by p and - !4 A, respectively.) If equations 

(4.5) hold, the corresponding conditions are 

s, = - h,, Pl= - 41 - %h - %A (12.9 

Note also that, for kl = k, = k, = k # Oeqaationa (4.2) are satisfied by the coeffi- 

cients of the quadratic form 

2T = a$‘f $: oJ’%’ + a$‘: + 2 (a&‘,P, + a,Pp, + anPIPs) + 

+ b,R,a + (” - Q) fa 1 F - Q) b1 R,’ + b,R,a +- 2 (c,P,R, + c,P,R, + c#,R,) 
1 9 

provided that 

h - b, 
k=-- 

Cl - c, ’ Sl = - a,, Pl = - 41 ma) 

In the following sections, two more solutions are given for the case k, = k,#k,, 

not investigated by Chaplygin. 

5. Tttird Solution. Assume k, = 0. Equations (4.2) are satisfied by the coefficients of 

the quadratic form 
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2T = D~P~Z + a,Pz2 + asps2 + 2a,,p,p3 t 2a3lp3pl-t 

+ib+*~!~~~~]R,2+bR12+jb+a3(~)a]RjL+ 

-+- 2 (c,P,R1 + c2P,R, + +p,R, + c,,p,R, + C23PtR3) 

and the relations 

a12 02% 
Sl = - - s, 

al 
s2 =- s, s3 = - - s, 

a3 
a, = J$ s, k&$3 

'fll2 
Pl = Cal - ?a, s, ( ) 

p2 rm- c*s + "1;: 1 T'(s + h2), [p2 = c22 - c3 2) s 

In addition, 

Pl + “l- R, cos cp + :lx s = 0, 
al - a, 

p, :: s, p, + ?Lz_!3 
al - a3 

R,sinp+2s===o 

R, = R, coscp, R, = R20, R, = R,sincp 

where q in an elementary function of time given by 

h 

This solution contains the sixteen parameters 01, 02, a3, aa3, a12, b,, cl, ~2, c3, ca3, czl, 

2, s, Ro, R2O1 ‘PO. 

6. Fourth Solution. From equations (4.21, the coefficients in the quadratic forms, 

equations (0.2) are found to be 

b, = b, + n (c2 - c) + kaq, b,, = kna12, b,, = 0, a13 = 0 
(6.1) 

cl2 = - na12, c 21 = - hn,,, c31 = Cl3 = 0 (13) 

where (6.2) 

k d-5, 20 (cl - c3) + al (c3 - c2) - a3 (cl - c3) n=- c3al - w73 

(2a - 0,) (a~ - 4 
, c= 

1 3 al - 03 

The parameter a is arbitrary. In addition, the following are obtained 

[(a2 - a) (a3 - a) - a2321 & - (a3 - a) al2h2 + al2a23h3 

‘1 = ’ (a1 - a) (az - a) (a3 - a) - (aI - a) a23a - (a3 - a) a132 

(aI - a) (a3 - a) h, -- (al - a) a,& - (a3 - a) a12h 

‘2 = a (al - a) (a2 - a) (a3 - a) - (al - a) a232 - (a3 - a) a122 

[(a2 - a) (al - a) - ~71~~1 A3 - (al - a) a2sh2 + al2a23h 

s3 = 0 (a1 - a) (a2 Z- U) (Q3 - a) - (~71 - a) a232 - (a3 - a) a122 

(6.3) 

pl = - ciLl - nnvlr p2 -= - clz - nnvz - 2aks,, p3 = - CL, - anv3 (6.4) 

Under these conditions, equations (0.1) are satisfied by the set of integrals 

P, = kR, + sl, P2 = nR2 + s2, P, = kR, + s3 (6.5) 

The constants k, n and si are determined from equations (6.21 and (6.3). 

Taking into account equations (6.5) and (4.21, the integrals, equations (0.51, may be 

written as 

RI2 + R32 = R? - R,2, vlRl f v2R2 = m - kR2 - v2R2 - (n - k) R,z 
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Hence 
(vl* + vS2) R, = Ye [m - kRz - v2R2 - (n - k) R,Z] - 

- vg 1/,v1, + v32) (R2 - R,2) - [ln - kR2 - V1R2 - (n - k) R22j2 (6.6) 

(v12 + v:) R, = v3 [m - kRZ - vzR, - (n - k) R,2] + 

+ v1 1/(v,’ + v$) (R* - R22) - [m - kRz - vaR, - (n - k) R22]Z 

One of equations (O.l), namely 

dR, 3T aT 
__=R --R - 
dt 3 LIPI l 3P, 

combined with equations (0.2), (6.1). (6.5) and (6.6) now determines R, as an elliptic 

function of time 

R* 

at = 
s 

{(VI2 + v?) (R2 - R22) - [m - kRz - vzRz - (n - k) R,‘]Z)-“,dR, 

RPO 

Moreover, equations (6.5) and (6.6) now determine the remaining variables as functions 

of time. 

The solution thus obtained contains the sixteen parameters 

al$ a21 a39 %2, a23, b2, cl, ~2, c3, h,, h,, A,, a, m, R, R,’ (6.7) 

It is remarkable by its relation to some solutionsof the classical problems concerning 

the motionof a heavy body about a fixed point. 

The parameters listed in (6.7) are now subjected to the additional conditions 

al2 = aa = 0, a = ‘lzazr b, = 0, cl = c2 = c3 = 0 

Hence, from equations (6.3) and (6.4). 
ala2 

CL1 = a2 - 2al “l* pz = 0, 
aJa2 

P3 = -n& a, - 2a, 

31 = .zala, a2 L 32 = A,, s3 = 2a3at 92 ha 

(6.8) 

The integrals, equations (6.5), may now be written as 

p, = 2a a2 L P2 = nRz + J.2, 
a2 

1 -- a2 '3 = 2a, - az '3 (6.9) 

If the quantities 

alI az, a,; p,, p,, p,; 
b !?_. 

n’n’ 
nR 

2 

are, respectively, defined as 

1 1 1 - - 
A’%-‘C’ AP, Rq, Cr; - v cos a, - v sin a; 

72 
- u 

Equations (6.8) and (6.9) take the forms 

1, = (2B - A) v cos a, A3 = (2B - C) v sin a 

a1 
p = 2~ = v cos a, +h = v (a, - Rq), 

a3 
r=m=vsina 

These conditions characterize the casesof integrability given in [S], which include the 

known Bobylev [6! - Steklov [7] solution. 
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