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In the general case, the equations *

dPy ‘ or or or oT
a = Bt b o — @y g+ () Ba— (5 — ) B

dr, ar oT (0.1)
7t :Rzgﬁ:—-Rsé—}i“ (123)

2T = ayPiP; + by;RR; +- 2¢;PR;

describe the motion of a multiply connected body in an unbounded ideal fluid. The imposi-

(0.2)

tion of certain conditions on the parameters

@ijs bijs cijy Ay, (0.3)
in equations (0.1) leads to much simpler problems in rigid body dynamics, such as motion
about a fixed point of a body in a Newtonian central force field, the motion of a heavy
gyrostat with steady internal cylindrical motion, etc. [1]. Moreover, some of the quantities
A; and u; must be different from zero; otherwise, the reduction indicated simply yields the
well known solution of Tisseran and Zhukovski. However, a majority of the known solutions
of the general problem have been obtained precisely under the conditions

A = 0, u; =0 (0.4)

Here, reference must be made to Chaplygin’s investigations [2] on linear integrals.

Solutions with one linear integral are given in [1], where some of the restrictions of
equations (0.4) have been removed. Hereinafter, solutions are obtained with two and three
linear integrals. In reducing the problem to quadrature, useis also made of the following
known integrals satisfying equations (0.1)

R+ R2 4 R2 =R  (Py+ M) Ry + (Py+ Ag) Ry + (P31 hg) Ry = m (0.5)
T —piRi=h (0.6)

* Translator’s Note: The symbol (123) denotes that the remaining equations may be
obtained by commuting subscripts.
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1. Solutions with two linear integrals. I.et us choose a coordinate system which is
fixed in the body so that the linear integrals will be of the form

P, = kR - 35 (12) (1.1)
The constants k;, ky, s, and s, will be defined later.
Taking note of equations (0.1) and (1,1), the derivatives of equations (1.1) with respect

to ¢ vanish identically with respect to I’;, Ry, H,, R, provided the following conditions

are satisfied.

¢ = — ka,, (12)
¢y = ¢y — hyay 1 (ky — k. = 1.2
1 3 11 1 (b ko) a3, €3y = — a5, kyCyy = kyoyy = 0
by = by + kykyay — (¢p — cg) (ky — ky), byg = 0, b1y -= kykyayy
By = crsy -t 0yp8p - gk — e5 (5p 4 Ay) — Ky (ay81 + a198,) (1.3)
Wy == CagSy T cigsy 1= cap (8 + Ay) — (¢ -+ kyay )i t12)
a3 = 0, (15 + agsy) Ay = 0, (st 4+ Ay) e =0
w18y + agsy = (s - Ay) ay (12) (1.4)

2. First Solution. The constants k;, k3, §; and s, may be obtained from equations (1.2}
and (1.4). For simplicity, they are assumed to be given, and the equations (1.2) and (1.4)

are used to define ¢yg, ¢35, Ay, Ag.
For A; = 0 equations (1.2) —(1.4) are satisfied by the co-efficients of the quadratic
form 2T = ajP® + a,Pg® -- Py |- 2a0 P\ Py + (b + arh®) By +
A4 (b o agks®) Ry® + [b + a5 (ky — k)l Rg® + 2kikgap Ry R,y +
+ 2 [eg — ayky 4= ay (b — k)] PyRy | 2 [cg — aghy -+ ay (ky — k)] PoRo - (2.1)
- 2¢4PyRy — 2kja PRy — 2ky0y,P\ R,

and the relations

M =[5 + a5 (kg — ko)l 5y — (k1 -+ ky 4 ”2‘) (151 + a1953) (2.2)

a a
x1:(ﬁ~1>sl—|— aL:'Sz, p,s:O {12)
Defining
i =Py — kR, — s, Jy=P3— kRy— s, J3=2Py— (k+ k)R, (2.3)
Equations (0.1), with the aid of equations (2.1) and (2.2), yield
dJ
_dTl= (as — ag) JoJ3 — aye iS5+ 2a3k:Ry/,
dJ,
dt

dJ
— = (aa — a)) Sy + ang U2 — J3®) + Jily — JoLs
Ly = — 2kgayo Ry + 2 [ayky + ag (kg — k)] Ry + (a5 — ay) (s, + Ag) — ayg (51 + Ay) 02)

Assuming that

= — (a3 — ay) J1Jy -+ ayaJoS3 — 2a5k,RyJy (2.4)

J, =0, Ja =0, J, = const =
t ? s T consh = s (2.5)

then equations (2.4) are satisfied independently of the second group of equations (0.1).
These latter may be written, in viewof equations (2.5), as
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d
-5—: — 2kyagRR3 — ag (s; -+ Ag) Ry + 43R,
dR
dt2 = — 2k203R1R3 + ag (sl —+ }»1) Ra — assR:l 2.6
R
ddts = 2ay (kg — k) R\R, + ag (sg + Ag) Ry — ag (sl + M) Ry

Two known integrals satisfying the above are
R,2+ R2+ R = R?
kR + kyR2 + (ky + k) R2+ (5, +A) By + (s + M) Ry +- sRy = m
and, consequently, R; = R; (Rg), R, = R, (R;). The functional relationship between R,
and ¢ may now be determined from equations (2.6) by quadrature.

The solution thusobtained contains fourteen independent parameters
ay, ag, ag, Ayg, b, kyy kg, C3, sy, Sa, 8, R, m, Ry°
The origin of coordinates will now be shifted to the mass center of the body, and the co-
ordinate axes will be taken coincident with the principal axes of inertia (this development
is similar to Sections 3 and 5, [1]). In thenew coordinate system, equations (2.1), (2.2)

and (2.3) are given by
2T = ayPy® + ayP? + agPg® + 2 (P1Ry + ¢;PyRy + ¢3PyR3) + 2¢y3 (PR, + P,R,) +

+p 2l mnie -0 fasla P ot af Cay — ey ososll oy
e L
ot o lnlemamatoml ettt el
4 2,2 (233 alcz)r —(Z)al_(c:l; D g,

+
+ 2a4 (a; 4 ag) ¢1y Ay

ag(ay+a) — a0, a3 — a
(a3 — ag) {es — ¢p) + a3 (cs — 02)] Ay

as (ay + ay) — aja,

(ag — ay) (es — ¢3) + a5 (c3 — 01)] M

W = [claa — €301 — ayag ag (a]_ + az) a4,

az — Qg

He = [Czas — C3d3 — dga3

a; — ay
2a4? (a1 + a3) ¢ M , Ay =0,
ag{ay + ay) — @105 a; — ay g =0
_ (as — ag) (63 — ¢)) 1 a5 (c5 — &) Q901 a3
Py = as (a; + ag) — aya, Ry + ag (ay + ag) — aya, R, + a, — ag My
ez —ay) (c3—ca) + ag{es — ) 101} ag
Py = ag (ay + ag) — aa, Ryt ag (ay + az) — alale + ay — as A

. (2a3 — ay) (e5 — ¢1) + (205 — ay) (c5 — &)
Py = ag (ay + a3) — @30, By
From equations (2.4) it is easy to obtain two solutions with arbitrary initial data,
generalizing the cases of integrability due to Steklov [3] and Liapunov [4]. Thus

—:11_! {{ag — ay) Jy* + (a5 — @9) J3%} = 2415 {(a5 — ag) Jo* — (ag — ay) Ji¥} T +
-+ dag {ky (a5 — ay) — ky (ag — a,)} RgJyJy
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Let ayg = 0, kl =% (a3 - ag)y ka =% (ag - al)-Then
(ag — ay) J1® + (a3 — ag) Jy* = const

or, taking into account equations (2.3) and (2.2),

(ag — ay) [Pl — % (ag — a) Ry +

o nf+
A.g]? = const

ag — a;
as
ag — aq

+ (ay — aj) [P,——u(as——al)R,—l»-

Now, if a; = ag = a3 = a, a,; = 0,then equations (2.4) yield
kyJ 2 - kyJ, 2 = const
From equations (1.3) and (2.2),

Cy — Cy Cg— O . M — __l’;z__
]g1=.——-——a——' y  kg= p ’ 81—2(01—03)’ s2—2(62—— c3)
and, consequently, 2
Cq — Cy Wy
(CI—CS)[P1+ a 31_2(01—‘03)] +

— 2
+ (cg— Ca)[Ps + 3 a 03R2 -3 (C:Li Cs)] = const

These cases of integrability were obtained in 1] using a different approach.

3. Second Solution. We nowlet A, ¥ 0 and restrict consideration to cases where
ky = kg == 0. Using equations (1.2) — (1.4) to determine &,, s, and the constants in
expression (0.3), leads to
2T = ayP + 4Py + ayPyd + b (RS + R + Ry) + 2 (PR, + PoR, + PRy +
+ 2¢y3 (PyR3y — P3Ry) + 2¢15 (P\R; — PyRy)

M=Mk=0 Ay=2 pPp=ocask, pPy=cph pg=-—ck, Py =0 P,=0
The integrals in equations (0.5) and (0.6), which in this case may be written as
R + R.?® 4 R = R3, Ps+MNR,=m

2 (Py 4 A) (c1aRy + capfly) = agPy® + 2¢ (Py+ A) Ry bR® — 2k

then yield P,, R, and R, as functionsof R,, and the last of equations (0.1) now takes the
form
dRg\? i 2
(T) = (5" + ¢as?) (R* — RA) RP — 5 [ag (m — AR + (20m + bR? — 2h) Ry?]
and consequently R, is an elliptic function of time.

If the origin of coordinates is shifted to themass center of the body, the solution may be
written as

2T = a,P2 + 4Py + ayPg + [b —4 (—ﬁl-c———“a),] R} + [b - 41—“@7)—2]1?, +

+[o a2l — ] re - d =R et +
+ 20 (PyRy + PyRy + PyRy) + 2015 (PyRy + PyRy) + 2035 (PyRs + PyR)
A=A =0, Ag=% p= "‘ . = P =::‘_'"Z:c,,x, g = — ch
Pt 01223‘133 =0 Pyt a_’z_f_’_’_a; =0
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4. Solutions with three linear integrals. By the same procedure asused in Section 1,
the conditions for the existence of a set ofintegrals

Py=kR + 5 (123) (4.1)
take the form

by — by = (kg + k3 — ky) (c3 — ca) + (ky — ko) kyay — (kg — Fky) keaq

beg = — kyty3 = — kylg, (kg — ko) (013 + ksaz) = 0
(ks — ky) (c1s + kaayy) = 0 (4.2)
Vally — V30 = 0, (cay + kiag) vy — (g + kyaye) v =0 )
By = (kg — k) a1 + (co 1 kaag) vy — (cia + kga1a) Vo
By = (ks — ks) 0y + (c5 + kyag) v1 — (o153 + ksag) V5
(123)
Here
Gy = ays; + ayasy -+ aziSy, Br =15+ omsy + ety —
vi=s+ M (123) (4.3)

Chaplygin [2], under conditions given by equations (0.4), confined himself to the analy-

sis of casesin which
(kg — kg) (kg — ky) (ky — k) =0 (4.4)
or ky = kg =ky =10 (4.5)

But for these casesitis also possible to remove some of the restrictions of equations
(0.4). Thus, in case condition (4.4) holds, instead of equations (0.4), it is sufficient to
require that the following conditions be satisfied:

(a1 — @) s; + ay983 + agysy = ak,y
mtletalky+ ket kJlAy =a (ky — ks — kg) 5 (133)
(Chaplygin denoted the parameters ¢ and ¢ by p and — %4 A, respectively.) If equations
(4.5) hold, the corresponding conditions are
8= —h, M1 = — cidy — cyhs — Cuhy (123)
Note also that, for ky = k; = k3 = k = 0 equations (4.2) are satisfied by the coeffi-
cients of the quadratic form
2T = a\Py* + agPg? + a3P3? + 2 (a3sPyPy + agyPyPy + ay3P\Py) +

+ bR b (e — ¢3) g: = :s —¢c) by

Rp® + bR + 2 ()PyRy + cyPyRy + ¢;P3R,)

provided that
by — bs
k=—2—22  a=—h  m=—oah  am
In the following sections, two more solutions are given for the case k, = k,5tk,,
not investigated by Chaplygin.

5. Third Solution. Assume k, = 0. Equations (4.2) are satisfied by the coefficients of
the quadratic form
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2T = a, P2 + a,Pg? + agPg? + 293P, Py + 2a5 P3Py -+
+{b—%— a1<———a> ]R2+bR22+{_b+aa(a — ) ]Be+
— a3
+ 2 (P Ry + & Pally + cgPaRy + enPolty + cyaPa i)

and the relations

= e el L R W )
1 a 2 ’ 3 as ’ 1 a, ’ 3 ag
'
ao= e Bt RPN .. Rl o PR YRR (R AT
231 \Ca1 "1 a, } v He 25 T a; — ag & 7 Ag)y \Ha 23 3 a,
In addition,
b — ¢ 12 €1 — ¢ . ayy
l—f— Rocoscp—{——-—s:O, Py =3, Py+——"Rysing+—"s=0
as a, — ag a,
R, = R, cos o, R, = R,°, Ry = Rysing
where ¢ is an elementary function of time given by
¢ 1
€1 — C3 G — €3 -
t = S[mo -+ (Cza _— azs) R;sing - <cql — ———a ] Rycosp| d¢
a, — ag a; — asg
®o
( ay? 0232) ( + c1a3 — C3al> R.©
Wy =lay, ——— — —
o 2 a; a5 C2 7, — ag 2

This solution contains the sixteen parameters a;, a,, a3, ag5, ayy, by,

A’zs 8, ROv H2°1 Po+

C1y C3y C3y Cggy €21y

6. Fourth Solution. From equations (4.2), the coefficients in the quadratic forms,
equations (0.2) are found to be

by = by 4- n (c; — ¢) + Ky, byy = knay,, b3 = 0, a3 =0
6.1)
Clz = — Nday,, Coy = — hk1ag,, € = €13 =0 (18)
where (6.2)
ko 61— C3 n:g” (1 — cg) + a3 (c3 — ¢3) — ag (o — ¢) __ C3a3 — a4
ay —ay '’ ' (2a — a,) (ay — aj) ’ ¢= ) — 43
The parameter g is arbitrary. In addition, the following are obtained
P ry g
s = a [(ez — a) (a3 — @) — a35®] by — (a3 — a) a1ahy 1 ayaa55)4
1 (2, — a) {ay — a) (a3 — a) — (a; — a) agg? — (a3 — a) a2
s = a (a1 — a) (a3 — a) Ay — (ay — a) a5hs — (ag — a) aph (6.3)
2 (ay — a) (4, — a) (ag — a) — (ay — a) agy® — (a3 — a) ay’
$. = g [(ag — a) (ay — a) — a12%] 7\3 — (a3 — a) 0237"2 + ‘112%37‘1
3 (ay — a) (ay = a) (a3 — a) — (ay — a) azg® — (ag — a) ay,°
Wy = — chy — anvy, Wy = — chy — anvy, — 2aks,, Hy = — chy — anv,; (6.4)
Under these conditions, equations (0.1) are satisfied by the set of integrals
P, = kR, + s, P, = nR, -+ sy, P, =FkR,+ s (6.5)

The constants k, n and s; are determined from equations (6.2) and (6.3).

Taking into account equations (6.5) and (4.2), the integrals, equations (0.5), may be
written as

Rz2+ R¢ = R® — Rp, ViRy 4 VR, = m — kR® — v,R, — (n — k) Ry?
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Hence
V2=V Ry =vy [m — kR? —v,R; — (n — k) R3] —
— ¥, V(V12 4 V) (B2 — Ry?) — [ — kR? — v,By — (n — k) Ry?)? (6.6)

(v -+ V) Ry = v; [m — kR? — v,R, — (n — k) Ry?] -+
+ v, V(2 + v (R? — R?) — [m — kR® — v,R, — (n — k) Rj2|?

One of equations (0.1), namely

dR, aT ar
@t = Ragp, — Rap,

combined with equations (0.2), (6.1), (6.5) and (6.6) now determines R, as an elliptic

function of time
R,
at = {(vi? + vg?) (R* — Ry%) — [m — kR® — v,Ry, — (n — k) Rz’]’)_% dR,
R:°
Moreover, equations (6.5) and (6.6) now determine the remaining variables as functions

of time.

The solution thus obtained contains the sixteen parameters
a1, gy a3y ayy, a3 b2’ Cyy C2y Cgy A’ly Az, Aa, a, m, R, Rzn (6.7)

It is remarkable by its relation to some solutionsof the classical problems concerning
the motion of a heavy body about a fixed point.

The parameters listed in (6.7) are now subjected to the additional conditions

by =0, ¢ =cg=¢=0

Ay == ag3 = 0, a = VY,a,,
Hence, from equations (6.3) and (6.4),
102 A3ag
M=o g e =00 py =g nhy
.. T _ . (6.8)
517 28, — a5 M, Sy = hy, §3 == 2a3 — ag Ay
The integrals, equations (6,5), may now be written as
_ Qg _ _ asg
Py = 24, — ag M, Py = nRy + Ay, Py = 225 — ag Ay 6.9)
If the quantities
. . a2t M3
aj, Qgy ag; Plv sz P31 T y T; nR2
are, respectively, defined as
1 t 1 . Tz
T B T Ap, Bq, Cr; — wvcosa, — v sinq; -5
Equations (6.8) and (6.9) take the forms
A = (2B — A) v cos a, A, = (2B —C)vsina
M — __Ai_._ — i
p=3g _ 4= Vvcosa, Ye = v (A — Bg), r=Sp_g¢g —Vvsna

These conditions characterize the cases of integrability given in [5], which include the

known Bobylev [6] — Steklov [7] solution.
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